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Abstract--Most calculations of particle deposition in turbulent boundary layers have been performed 
using an equation of motion in which the form for the lift force is that in a linear shear flow for a particle 
far from any boundaries, the so-called Saffman formula. Both direct and large eddy simulations of particle 
deposition in turbulent channel flow have shown that the dependence of the deposition velocity on particle 
relaxation time is over-predicted using the Saffman force. Since the derivation of the Saffman force there 
have been more general derivations of the lift on a particle in a shear flow. In this paper an 'optimum' 
lift force is formulated which represents the most accurate available description of the force acting on 
a particle in a wall-bounded shear flow. The effect of the force was examined through large eddy simulation 
(LES) of particle deposition in vertical turbulent channel flow. The optimum force for depositing particles 
is approximately three times smaller than the lift obtained using the Saffman formula. LES results also 
show that use of the optimum force yields a dependence of the deposition velocity on particle relaxation 
time less than that obtained using the Saffman form and in better agreement with experimental 
measurements. Neglecting the lift force altogether leads to an even smaller dependence of the deposition 
velocity on particle relaxation time and is in better agreement with empirical relations, although the 
deposition rates are smaller than experimental measurements for particles with intermediate relaxation 
times. © 1997 Elsevier Science Ltd. 
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1. INTRODUCTION 

In an  ear l ier  work  on  par t ic le  depos i t ion  in vert ical  tu rbu len t  channel  flow, W a n g  and Squires 
(1996a) found  tha t  s ta t is t ical  measures  pred ic ted  by large eddy  s imula t ion  (LES) were in good  
agreement  with the direct  numer ica l  s imula t ion  (DNS)  results o f  M c L a ugh l in  (1989). In W a n g  and 
Squires  (1996a) and  M c L a u g h l i n  (1989), as well as the ma jo r i ty  o f  ca lcula t ions  o f  par t ic le  
depos i t ion  in tu rbu len t  b o u n d a r y  layers,  the effect o f  shear - induced  lift as der ived by Saffman 
(1965, 1968) is inc luded in the par t ic le  equa t ion  o f  mo t ion  (e.g. see Kal l io  and  Reeks  1989; 
M c L a u g h l i n  1994). The  bulk  o f  this work  has d e mons t r a t e d  tha t  the Saffman lift force is impor t an t  
near  the wall,  i.e., in the viscous sublayer ,  and  enhances  depos i t ion  (McLaugh l in  1989; W a n g  and 
Squires  1996a). 

Saffman (1965, 1968) der ived the force on a par t ic le  due to veloci ty shear  by consider ing m o t i o n  
far  f rom any  bounda r i e s  and  in which the fluid veloci ty grad ien t  is cons tant .  Saffman assumed tha t  
Reyno lds  numbers  defined in terms o f  the slip velocity,  Res, and  veloci ty gradient ,  Rec,  were small  
c o m p a r e d  to uni ty  and  tha t  Res<< Re~ 2. However ,  in a D N S  s tudy o f  aerosol  m o t i o n  in a tu rbu len t  
channel  flow at  m o d e r a t e  Reyno lds  number ,  M c L a ugh l in  (1991) repor ted  tha t  the value o f  R %  
is typica l ly  o f  o rde r  0.04 whereas  Res is o f  o rde r  unity,  indica t ing  that  Res is not  small  c o m p a r e d  

1~ ~1/2 to 1,,,c • The fact  tha t  the Saffman fo rmula  also does not  take  into account  the influence o f  the 
wall  fur ther  l imits its appl icabi l i ty .  Consequent ly ,  it should  be expected that  the lift force predic ted  
using the Saffman fo rmula  will not  be accura te  near  solid boundar ies .  In fact, the D N S  results  o f  
M c L a u g h l i n  (1989) and  LES pred ic t ions  o f  W a n g  and  Squires (1996a) show that  the dependence  
o f  the depos i t ion  rate  on par t ic le  re laxa t ion  t ime is over  pred ic ted  using the Saffman lift force (see 
figure 1). 
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There have been several other  investigations into more  general forms of  shear-induced lift on 
a particle as well as corrections due to the presence o f  the wall (e.g. see Vasseur and Cox 1977; 
Cox and Hsu 1977; McLaughl in  1991, 1993 and Cherukat  and McLaughl in  1994). McLaughl in  
(1991) analyzed the lift force on a particle in an unbounded  shear flow and modified the Saffman 
formula  by removing the restriction that  Re~<< Re~ 2. It was found that  the resulting force in some 
cases is much smaller in magni tude than the Saffman formula.  Vasseur and Cox (1977) considered 
the force acting on a particle in a uniform flow between two parallel walls and derived a form for 
the force due to the presence o f  the wall so long as the wall lies in the outer region of  the disturbance 
created by the particle. The force obtained by Vasseur and Cox (1977) can be considered a 
correction to the lift due to the wall and is valid when the Reynolds number  based on the distance 
o f  the particle f rom the wall and a characteristic flow velocity is large compared  to unity. Cox and 
Hsu (1977) considered the force acting on a particle in a shear flow and derived the lift force for 
the case in which the wall lies in the inner region of  the particle disturbance. All the above forces 
assume the distance between the particle and wall is much larger than the particle radius. Cherukat  
and McLaughl in  (1994) obtained an expression for the lift force on a particle which is valid when 
the distance between the particle and wall are comparable  to the particle radius. 

In a later work,  McLaughl in  (1993) derived a form of  the lift force due to the presence o f  the 
wall which provides a connect ion between the analyses o f  Vasseur and Cox (1977) and Cox and 
Hsu (1977). By merging the formula  derived by Cherukat  and McLaughl in  (1994), applicable close 
to a boundary ,  together with the formula  in McLaughl in  (1991), Vasseur and Cox (1977), Cox and 
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Figure 1. Particle deposition rate in turbulent channel flow from Wang and Squires (1996a). The 
deposition velocity is denoted VJ, p is the ratio of particle to fluid density, and z is the particle relaxation 
time. In the figure and throughout this work the + subscript is used to express quantities in terms of 
wall variables. LES calculations performed using Saffman lift force, p = 713 . . . . .  V~ = 0.0006(~+) 2 (Liu 
and Agarwal 1974); - - . - -  V~ -- 0.000325(z+) ~ (McCoy and Hanratty 1977). LES: O Re, = 180; • 
Re, = 1000; - -  least-squares fit of LES results; Liu and Agarwal (1974) (Reynolds numbers based on pipe 
diameter and average velocity): x Re = 10,000; + Re = 50,000. LES predictions of the deposition 
velocity exhibit a stronger dependence on relaxation time than measured in experiments. A least-squares 
fit of the LES predictions yields a dependence of the deposition rate on particle relaxation time of ~÷272. 
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Figure 2. Wall-normal profiles of the Reynolds numbers Res and Re~ ~ averaged over particles which 
deposit, z+ = 6: . . . . . . . .  Re~2; Re~; z+ = 100: Re~t'2; . . . .  Res. 

Hsu (1977), and McLaughlin (1993) for the lift force acting on a particle further away from the 
wall, one obtains a force applicable near boundaries and also appropriate for regimes much less 
restrictive than the Saffman formula. It should be expected that more accurate forms of the lift 
force acting on a particle will improve predictions of  particle deposition in turbulent boundary 
layers. In this paper an 'optimum' lift force is formulated which represents the most accurate 
available description of  the force acting on a particle in a wall-bounded shear flow. The force is 
then implemented in large eddy simulations of  particle deposition in vertical turbulent channel flow. 
An overview of  previous investigations of  the lift force acting on a particle in a wall-bounded shear 
flow and formulation of  the 'optimum' force is presented in section 2. A discussion of  the 
simulations is presented in section 3 together with LES results. A summary of the work may be 
found in section 4. 

2. BACKGROUND 

The form for the lift force employed in previous studies and used by Wang and Squires (1996a) 
is that derived by Saffman (1965, 1968) 

[IGI] 
F2 = -6 .46  pa2U. sgn(a) L / ' [1] 

where a is the particle radius, p is the dynamic viscosity, v is the kinematic viscosity, G = du~/dy 
is the wall-normal gradient of  the streamwise fluid velocity, and Us = v, - u~ is the instantaneous 
streamwise velocity difference between particle and fluid (defined at the particle center). It is 
important to note that [1] as well as the other forms for the lift force considered in this section 
are based on singular or regular perturbation solutions of the Navier-Stokes equations. Thus, these 
solutions are strictly applicable when the Reynolds numbers are smaller than unity. Furthermore, 
in the derivation of the Saffman force (1) the Reynolds number based on the slip velocity, 
Res = I Us/d/v is assumed to be much smaller than that defined in terms of the velocity shear, 
R°~n [IGl~/v] ~/2, where d = 2a is the particle diameter. However, McLaughlin (1991) showed that, WG 
on average, Do,/2 ,,,,,~ is smaller than Re~ for aerosol transport in a turbulent channel flow. Figure 2 
shows wall-normal profiles of  Res and Re~ 2 from the LES calculations of Wang and Squires (1996a) 
for two particle relaxation times averaged over particles which deposit. It is clear that these 
Reynolds numbers are dependent upon both particle relaxation time and distance from the wall. 
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The figure also shows that the condition Re~<< Reg 2, assumed in the derivation of [1], is violated. 
For  particles with z÷ = 100, the value of Re~ can be as much as five times larger than Reg 2 while 
the difference is smaller for particles with smaller z ÷. The maximum values of Res are 25 and 2.5 
for r ~ = 100 and ~÷ = 6, respectively, while the maximum Reg 2 is 3.5 and 0.8. 

McLaughlin (1991) relaxed the Reynolds number restriction in the Saffman formula and derived 
an expression for the lift force 

F2 = - I~a2U~ sgn(G) ju, [2] 

where the function ju is dependent upon the dimensionless parameter  

2 

E = s g n ( G U ~ ) ~  = sgn(G) Us [31 

Since the general expression for J~ is rather complicated, the value is tabulated for ~ ~ O(1) in 
McLaughlin (1991). Analytical forms for asymptotically small and large E are also derived in 
McLaughlin (1991) 

J~ = -32g21EI 5In(I/E2), I¢1<< 1, [4] 

J~ = 2.255 - 0.6463/E 2, lel>>l. [5] 

Note that, for [El --* oe, J~ = 2.255 and the force is identical to the Saffman formula [1]. Figure 3 
shows the function J~ vs E, where J~ is calculated using [4] for ~ < 0.025 and [5] for E > 5 while 
linear interpolation from the values in table 1 in McLaughlin (1991) is used to obtain J~ for 
0.025 ~< E ~< 5. Also shown in the figure is the Saffman formula [1]. It is clear that the two functions 
coincide only for large IEI, i.e. Res<< °"~'2-,-,-G , which Saffman assumed in deriving [1]. For  smaller IEI, 
however, the lift force obtained from [1] is much larger than that from McLaughlin (1991). In fact, 
figure 3 shows that for E ~ 0.15 the sign of the Saffman force is also incorrect. 

Both [1] and [2] were derived for a particle in a shear flow away from walls. A force on a particle 
due to the presence of a wall and valid at distances far from the wall was derived by Vasseur and 
Cox (1977). Vasseur and Cox considered the force on a particle in a quiescent flow field bounded 
by two walls. Defining the distance between the walls as L and that between the particle and the 
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Figure 3. Profile of  J°. - -  McLaughl in  (1991); . . . .  Saffman (1965, 1968). 
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Figure 4. Lift force from Vasseur and Cox (1977), [6]. - -  l/L = 0; . . . .  I/L = 0.25; - - -  - -  I/L=0.35; . . . .  
I/L= 0.45. 

wall as l, the lift force derived by Vasseur and Cox is 

F2 3 f~o~ f ~  ik, {cosh[(t + q ) l , ] _ c o s h [ ( t _ q ) l , ]  6npra2 U 2 - 2n "-ff 

+ cosh[(t - q) (L*  - l*)] -- cosh[(t + q) (L*  -- l*)] 

+sinh(qL*)s inh[ t (L* - 2/*)] + sinh(tL*)sinh[q(L* - 2/*)]} dk, dk2, [6] 

where  1" = llUsJ/v, L*  = LIUsI/v, q = ~ + k 2, t = x / k  2 + k~ + ik,, pr is the density o f  the fluid 
and 

2 = 4tq - (t + q)"cosh[(t - q)L*] + (t - q)2cosh[(t + q)L*]. [7] 

F o r  l /L ~ 0, [6] becomes 

F2 3 f~_~f~ t+q[e_q , ,  e_,t.]2dk, dk2" 
6rcpra2U~ - 4re ~--  q 

[8] 

Shown in figure 4 is the lift force [6] for  var ious values of  the distance l* and L*. Only the 
values for  l /L  between 0 and  0.5 are shown since the force is symmetr ic  abou t  the centerline 
between the walls. Figure 4 shows that  [6] is always positive (i.e. directed away f rom the wall). 
Fo r  particles at  the channel  centerline, I/L = 0.5 and [6] yields zero force. It should also be 
noted  that  the force [6] derived by Vasseur and Cox (1977) is applicable when the wall lies 
in the outer  region o f  the particle dis turbance and for which there is no shear in the flow 
field. Cheruka t  and  McLaughl in  (1990) have shown that  the fo rm o f  the lift force derived by 
Vasseur and Cox was in good  agreement  with their exper imental  measurements  for particle 
Reynolds  numbers  up to three. Cox and Hsu (1977) derived a formula  for the inertial 
migra t ion  velocity Vm of  a spherical particle in a vertical linear shear flow 

3 aU~ 11 GaU, I 
Vm -- 32 V 64 V [9l 
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The corresponding lift force, including both the shear- and wall-induced parts, can be obtained 
from [9] 

F2 = ~-~ I~pfa2U~(6U~ -- 11GI). [10] 

Note that [10] is valid when the wall lies in the inner region of the particle disturbance. 
Each of the forces discussed above are derived by assuming that the distance between the particle 

and wall are much greater than the particle radius, i.e. 1/a>> 1. Cherukat and McLaughlin (1994) 
derived a form of the lift force which is applicable when the distance between the particle and wall 
is comparable to the particle radius 

F2 1.7716 + 0.2160x - 0.7292~: 2 + 0.4854K 3 
pra2U2 - 

- (3 .2397x ' + 1.1450 + 2.0840~: - 0.9059K2)A 

+(2.0069 + 1.0575x -- 2.4007K 2 + 1.3174~c3)A 2, [11] 

where K = all and the nondimensional shear is A = aUdG. I f  the slip velocity G = 0, the velocity 
scale Us should be replaced by aG (see Cherukat  and McLaughlin 1994). Note that [11] is valid 
for distances I such that a < l<<min{Ls, L~}, where Ls = v/lUsl is the Stokes lengthscale and 
LG = x / / ~  the Saffman lengthscale. Note also that [11] reduces to [10] from Cox and Hsu for 
small values of  x (i.e./>>a). Shown in figure 5 is the force [11] as a function of shear and distance 
from the walt. It  is clear that when A < 0 (i.e. G and Us having opposite sign), the lift force is 
positive and will result in motion away from the wall. On the other hand, when A > 0, the lift force 
[11] is negative for large l/a and positive for small l/a (and large A). 

For  a particle far from the wall, McLaughlin (1993) obtained a closed form solution for the lift 
force which provides a connection between the various limiting cases considered by previous 
investigators and outlined above. The resulting expression for the lift takes the form 

F2 = - #a2Us sgn(G) J. [12] 

The function J is comprised of two components,  J = J~ + J-*, where J~ corresponds to the 
shear-induced lift in an unbounded flow and jw is the correction due to the presence of a wall• The 
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Figure 5. Lift force from Cherukat and McLaughlin (1994), [11]. - -  l/a = 1•1; . . . .  l/a = 1.5; - - . - -  
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Table  1. Regions  o f  applicabili ty of  o p t i m u m  lift force. Tables  refer to those in M c L a u g h l i n  (1993) 
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Id < 0.2 0.2 ~< PEI ~ 2 I~l > 2 

1 + ~< rain{l ,  L/Lc}  [ l l ]  [11] [11] 
min{ l ,  L/LG} <~ 1 + <<. 0.1 [15] [15] or  [14] [14] 
max{0.1,  min{1,  LdLG}I ~< l + ~< 5 [15] Table  I or  2 Table 1 or  2 
/ + >/max{5, L/Lo} [13] [13] [13] 

shear-induced component J° is that derived by McLaughlin (1991) and given in [2] (note that the 
Saffman formula [1] corresponds to J~ = 2.255, jw = 0). McLaughlin (1993) derived an expression 
for the wall-correction part J~ of  [12] which depends on E and the nondimensional distance from 
the particle center to the wall, l + = 1/LG. McLaughlin (1993) showed that the wall-correction part 
of the lift force is consistent with those of Vasseur and Cox (1977) and Cox and Hsu (1977) for 
the regions in which each is valid. The general expression for J'~ in McLaughlin (1993) is quite 
complicated and therefore values of J are tabulated for I~] ~> 0.2 and 0.01 ~< l ÷ ~< 5.0. For large l + 
McLaughlin (1993) obtained an approximate expression 

1.879 
J = J~ - (l+)5.----- ~. [13] 

The function J for other cases can be obtained from the simple forms derived by other investigators. 
In particular, for small l + and large le[, [10] from Cox and Hsu (1977) can be used while for small 
IEJ [6] from Vasseur and Cox (1977) is appropriate. Recasting [10] in terms of  E and l + yields 

while the Vasseur and Cox (1977) form (6) can be rewritten as 

2g 2 
J =  - - - I +  J~, [15] 31~1 

where I is the two-dimensional integral of  the right-hand side of [6] or [8]. The unbounded-flow 
part J~ has been included in [15] since the form [6] obtained by Vasseur and Cox (1977) was derived 
by assuming the flow is stagnant (the fluid velocity gradient G does not appear). Finally, it should 
again be noted that the forces from Vasseur and Cox (1977), Cox and Hsu (1977), and McLaughlin 
(1991, 1993) shown above are derived by assuming that the distance between the particle and the 
wall is much larger than the particle radius. When this condition is not satisfied [11] from Cherukat 
and McLaughlin (1994) should be used. 

The combinations of the various lift force formula described above are the most accurate 
description of shear-induced lift available, including corrections for the presence of a wall, and can 
be considered the 'optimum' force. The various expressions in the optimum force and the range 
in which these expressions are applicable are summarized in table 1. The force as summarized in 
the table is similar to that used by Chen and McLaughlin (1995) in their direct numerical 
simulations of particle deposition in turbulent channel flow. However, Chen and McLaughlin 
(1995) base the lift solely on the distance of the particle from the wall while the optimum force 
in table 1 is dependent upon both l + and E. Near the wall, Chen and McLaughlin (1995) apply 
[10] while [11] is used in the present study. Outside the viscous sublayer (i.e. l + > 5) the optimum 
force is specified according to [13] while Chen and McLaughlin (1995) used [6] from Vasseur and 
Cox (1977) together with the shear-induced lift [2] from McLaughlin (1991). It is also important 
to note that, while the objective of  this paper is to examine the effect of the lift force on particle 
deposition, Chen and McLaughlin (1995) focused on other aspects such as the effect of a Brownian 
random force, particle polydispersity, and different definitions of the deposition rate. 

The function J for the optimum force is shown in figure 6 for various values of E, together with 
other lift force formula. For  the profiles shown in the figure the length scale based on the slip 
velocity, Ls, is set to zero, i.e. the lift force [11] is not used in the figure. For  large E, [14] from 
Cox and Hsu (1977) is applied for l ÷ < 0.1 while the values in tables 1 or 2 of McLaughlin (1993) 
are used for 0.1 ~< 1 + ~< 5 and [13] is used for l + > 5. As may be observed in the figure there is a 

IJMF 23/4--F 
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relatively smooth  merging at the junctions l + = 0.1 and l + = 5. Figure 6 indicates that for large 
e (i.e. large velocity gradient G and/or  small slip velocity Us), the op t imum force and the Saffman 
formula  are o f  the same sign ( though the magni tudes  are quite different for l + near zero). For  small 
E, however, the sign o f  the lift force from the Sail'man formula  could be different f rom the op t imum 
force, especially for small 1 +. The op t imum lift force reduces to the Saffman form when both E and 
l + are large. As is also clear f rom figure 6(a), for small ~, the op t imum lift force is almost the same 
as that  f rom Vasseur and Cox, and therefore in good agreement with the experimental 
measurements  o f  Cherukat  and McLaughl in  (1990). 

Hall (1988) measured the lift force acting on spheres on and near the wall of  a turbulent boundary  
layer and it is therefore o f  interest to compare  predictions of  the lift for the op t imum force to Hall 's  
measurements.  For  particles on a smooth  surface, Hall (1988) showed the data  were well correlated 
by 

~+ = 20.90(a + ) 2 l 3 l , [16] 

for measurements  in the range 1.8 < a + < 70, where a + is the particle radius and F + is the force, 
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Figure 6. Compar i son  of  J in [12] for the ' op t imum'  lift force to other  limiting cases. (a) ~ = 0.1; (b) ~ = 0.5; 
(c) E = 2.0; (d) E = 2 0 . 0 . -  ' op t imum'  lift force, table 1; . . . .  [4] and [5] and tables (McLaughlin 1991); 
- - .  - -  [6] (Vasseur and Cox 1977); . . . .  J =  - 1.879/(/+) 53 (McLaughlin 1993); + [14] (Cox and Hsu 1977); 
* [I] (Saffman 1965, 1968); x [15] (Vasseur and Cox 1977 and McLaughlin 1991); (3 [13] (McLaughlin 

1993 and McLaughlin 1991). 
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both expressed in wall units. In terms of inner variables, [12] can be rewritten as 

9 (a+)2U + sgn(G)jG+l,/2j" [17] F2=-~ 

Shown in figure 7 is comparison of the optimum force as well as the Saffman formula to the 
correlation [16] from Hall (1988). Similar to the comparison considered in Hall (1988), the 
streamwise mean slip velocity used for calculating the force in figure 7 is prescribed as 

I l + l + < 5 [18] 
U~ + =  - 3 0 . 5 + 5 . 0 1 n l  ÷ 5~<l  ÷ < 3 0  

[ 5 . 5 + 2 . 5 1 n / ÷  l +I>30. 
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Figure  8. C o m p a r i s o n  o f  the Saf fman lift force  and  the 'opt imum'  lift force  averaged  over  particles that  
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It is evident that for a + greater than about 5, the optimum force agrees well with the empirical 
correlation whereas the Saffman force is smaller, especially for larger a ÷. 

It should also be noted that in the forms of the lift force discussed above and used in formulation 
of the optimum force, the effect of particle rotation has been neglected. Cherukat and McLaughlin 
(1994) derived expressions for the lift force for both non-rotating and freely rotating spheres. 
Equation [11] used in the optimum lift force is the form for non-rotating spheres. As discussed in 
Cherukat and McLaughlin (1994), the differences in the expressions for rotating and non-rotating 
spheres can be important in some instances. However, for situations in which the lift is expected 
to have the largest effect (particle leading the fluid by a large slip velocity), the difference in the 
lift for rotating and non-rotating spheres in Cherukat and McLaughlin (1994) is small. When the 
particle lags the fluid, the difference between the expressions is even smaller. It is also important 
to note that the two expressions for the lift in Cherukat and McLaughlin (1994) yield almost the 
same force except when the particle is almost touching the wall. This is consistent with the 
experimental measurement of Cherukat and McLaughlin (1990) in which it was observed there was 
no rotation for particles as close as two radii from the wall and that rotation was only observed 
when the spheres touched the wall. More recently, Cherukat and McLaughlin (1996) carried out 
numerical simulations to determine the lift on a sphere in a shear flow and tbund that the lift on 
a non-rotating sphere is significantly different from that on a rotating sphere in the regime where 
Rec<<Re~ (i.e. small e). However, in this regime the magnitude of the lift force is small 
(c.f. figure 3) and, thus, rotation should not be expected to have a significant effect. 

Finally, it is important to note that the optimum force is derived under the assumptions that 
the flow field is steady, the particle is moving at a constant velocity parallel to the shear flow, and 
that the velocity profile is linear. Results are presented in Vasseur and Cox (1976), Cox and Hsu 
(1977), and Hogg (1994) for parabolic velocity profiles; Hogg (1994) also considered particle 
motion across streamlines. The reader is referred to the recent work of Miyazaki et al. (1995) in 
which results are presented for the force on a sphere in unsteady flows. 

3. SIMULATION OVERVIEW AND RESULTS 

3.1. L E S  q f  turbulent channel,[tow 

Large eddy simulation of the incompressible Navier-Stokes equations is used to obtain a 
description of the large scale velocity field in fully-developed turbulent channel flow. The filtered 
equations of motion can be expressed as 

/)~7, 
~x--~ = 0, [19] 

C.tT, c? (~,z~,) = 915 + 1 ~-~LT, (?r,/ [20] 

where fi~ is the resolved velocity field and f is the filtered pressure. Note that [19] and [20] have 
been nondimensionalized using the friction velocity u~ and channel halfwidth 6. The Reynolds 
number Re, = 6u~/v. 

The filtering procedure used to obtain [20] yields the subgrid-scale (SGS) stress z,, which requires 
a model. The SGS stress z,, is parameterized using the dynamic eddy viscosity model of Germano 
et al. (1991). As described in Wang and Squires (1996a, b) dynamic SGS models possess a 
significant advantage compared to traditional closures in that information from the resolved scales 
is used to calculate the eddy viscosity. Therefore, a priori specification of model constants is not 
required. 

The filtered equations of motion were solved using the fractional step method on a staggered 
grid (e.g. see Kim and Moin 1985; Perot 1993; Wu et al. 1995). Spatial derivatives were 
approximated using second-order accurate central differencing. The time advancement scheme is 
a mixed explicit/implicit method in which second-order Adams-Bashforth is used for advancement 
of the convective terms and part of the SGS stress while the Crank-Nicholson method was applied 
for update of the viscous terms and remainder of the SGS stress, The continuity constraint is 
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satisfied via solution of  the Poisson equation for pressure. The Poisson equation is solved using 
series expansions in the streamwise and spanwise directions together with tridiagonal matrix 
inversion (e.g. see Williams 1969; Kiln and Moin 1985). 

Calculations were performed at two Reynolds numbers, Re~ = 180 and 1,000. The corresponding 
Reynolds numbers defined using the centerline velocity and channel halfwidth are 3,200 and 21,900, 
respectively; those defined using the bulk velocity and hydraulic diameter are 11,160 and 79,400, 
close to bulk velocity Reynolds numbers of  10,000 and 50,000 in the experiments of  Liu and 
Agarwal (1974). 

3.2, Calculation of  particle trajectories 

The motion of particles with material densities large compared to the fluid is considered. In this 
regime the drag force is substantially larger than forces associated with virtual mass, buoyancy, 
and history effects. The particle equation of motion can then be expressed as 

dv _ pf 3 CD ]v -- u[(v -- u) + f. [21] 
dt pp 4 d 

In [21], v is the particle velocity, u is the velocity of the fluid at the particle position, and f is the 
lift force per unit mass (directed in the wall-normal direction). The particle densities in [21] is 
denoted by pp. Effects of nonlinear drag are incorporated through CD and in this work an empirical 
relation from Clift et al. (1978) was used 

24 [1 + 0.15 Re °6871 [221 CD = ~ 

The calculations correspond to a vertical channel in which gravity does not directly lead to 
deposition and therefore its effect has not been included in [21]. The lift force f in [21] is expressed 
per unit mass and after nondimensionalizing in terms of u~ and 6 the non-zero component normal 
to the wall may be expressed as 

F~ 1 
A [23] 4 ~z(aO )3pp u~ /6' 

where f'2 is the dimensional force discussed in section 2. 
The particle equation of motion [21] and particle displacement were time advanced using 

second-order Adams-Bashforth. The fluid velocity at the particle position was interpolated from 
the grid using fourth-order Lagrange polynomials (see Kontomaris et al. 1992 and Wang et al. 
1995 for further discussion). For  particles that moved out of the channel in the streamwise or 
spanwise directions, periodic boundary conditions were used to reintroduce it in the computational 
domain. Deposition was assumed to occur when a particle was within one radius of the wall. It 
should also be noted that the fluid velocity used in the particle equation of  motion was the resolved 
component, i.e. the effect of  subgrid-scale velocity fluctuations on particle motion have been 
neglected. As discussed in Wang and Squires (1996a), for the motion of particles with densities large 
compared to the fluid and at the moderate Reynolds numbers considered, neglect of SGS velocities 
is justified. 

3.3. Results 

LES of  fully-developed turbulent channel flow was performed using the optimum lift force 
formulated in section 2. The trajectories of 20,000 particles were used in the simulations and 
statistics were obtained by averaging over 270 time units. Particles are characterized in terms of 
their relaxation time, expressed in wall units as r + = 2pa+2/9 where p = pp/pr. Shown in figure 8 
are the wall-normal profiles of the lift force averaged over depositing particles in LES calculations 
performed at Re~ = 180. The profiles shown correspond to particles with z + = 4 and z + = 6 and 
were obtained from simulations performed using the optimum force summarized in table 1 and 
the Saffman formula. The forces have been averaged over both sides of the channel and over x - z  
planes. It is apparent that the magnitude of the Saffman force is about three times larger than the 
optimum lift force. It is also evident that, similar to the Saffman force, the optimum lift force is 
quite small for y+ > 10, due to the reduction in both J~ and jw. 
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Figure  9. Par t ic le  depos i t ion  rate in tu rbu len t  channe l  flow, LES ca lcula t ions  per formed using the 
' o p t i m u m '  lift force, p = 713 . . . . .  V~ = 0.0006(z+) 2 (Liu and  Agarwa l  1974); • - -  V2 = 0.000325(r+) -~ 
(McCoy  and H a n r a t t y  1977). LES: O Re+ = 180; * Re, = 1000; - -  least-squares  fit of  LES results; Liu 
and  Agarwa l  (1974) (Reynolds  numbers  based on pipe d iamete r  and  average velocity): x Re = 10,000; 

+ Re = 50,000. 

The deposition rate, defined as the ratio of the flux of particles at the deposition surface to the 
particle concentration, calculated using the optimum lift force in the particle equation of motion 
is shown in figure 9. A least-squares fit of the LES predictions yields a dependence on the relaxation 
time of ~+218. This is significantly smaller than the dependence obtained in simulations in which 
the Saffman formula was used (c.f. figure 1). The dependence of the deposition velocity on r + in 
the LES is somewhat larger than the quadratic dependence observed experimentally. Comparing 
figures 9 and 1 indicates that the effect of different lift force formula on the deposition rate is largest 
in the range 2 < r+ < 15. Deposition rates obtained using the Saffman force are larger than those 
using the optimum force in this range. The predicted deposition rates are consistent with the 
previous discussion in that, in a typical channel flow, the Saffman force is towards the wall and 
possesses a larger magnitude than the optimum force. 

Finally, a series of calculations were performed in which the lift force was omitted from the 
equation of motion. The deposition rate from these simulations is shown in figure 10. Also shown 
for comparison are results obtained using the optimum lift force. The results in figure 10 show that 
neglecting the lift force altogether affects the predicted deposition rate in the range 2 < ~+ < 15. 
In this range deposition rates for particles with no lift are smaller than those for particles using 
the optimum force. This is consistent with the work of Kallio and Reeks (1989) in which the 
Saffman force was found to have a significant effect on deposition only for particles in the range 
1 < r+ < 10. It is also interesting to note that the dependence of the deposition rate on particle 
relaxation time in simulations without the lift force (Vd ~ ~+195) is smaller than that obtained using 
the optimum lift force and in better agreement with empirical relations although the deposition 
rates are smaller than both those with the optimum force and those from experiments of Liu and 
Agarwal (1974) for intermediate x+. 
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Figure 10. Compar ison of particle deposition rates from simulations with no lift force to those obtained 
using the 'op t imum'  lift force, p = 713. LES; * no lift force; C) 'op t imum'  lift force; Liu and Agarwal 
(1974) (Reynolds number  based on pipe diameter and average velocity): x Re = 10,000; + Re = 50,000. 

4. SUMMARY 

An optimum force representing the lift on a particle in a wall-bounded shear flow has been 
formulated which is a combination of the different forms obtained by previous investigators. The 
lift force is comprised of two parts: one accounting for velocity shear and the other accounting 
for the presence of the wall. The shear-induced part is usually smaller than that derived by Saffman 
(1965, 1968), and reduces to the Saffman force only in certain limiting cases. The effect of the wall 
on the lift, not accounted for in the Saffman formula, is significant since its effect can be larger 
in magnitude than the shear-induced part near the wall and may also have an opposite sign. The 
optimum force was incorporated into large eddy simulations of particle deposition in vertical 
turbulent channel flow. LES results show that the optimum lift force is substantially smaller than 
that obtained using the Saffman formula and results in a dependence of the particle deposition rate 
on relaxation time in better agreement with experiments. It was also found that the overall effect 
of the lift force is small since neglecting it altogether results in only a slight reduction in deposition 
rates compared to simulations in which it is included. 

The proposed optimum lift force should find more applications in addition to the prediction of 
particle deposition in turbulent boundary layers. The relatively small effect of the optimum lift force 
on predictions of particle deposition should not be interpreted as the force itself being inaccurate 
or unimportant in the general case. The optimum lift force should be used rather than the Saffman 
force or other limiting forms derived under more restrictive conditions than surveyed in this work. 

It should also be noted that, while LES results using the optimum (or no lift) force yield a 
dependence of the deposition rate on relaxation time in reasonable agreement with experiments, 
the magnitude of the deposition velocity is smaller in the LES calculations than in experiments. 
Some of the discrepancy can be attributed to the use of an LES, rather than a DNS. The LES 
requires use of a subgrid model for computation of the fluid velocity field and subgrid-scale 
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velocities are also not directly available for calculation of particle trajectories. Each of these 
contributes to the discrepancies between simulation results from LES and experimental 
measurements, while neither approximation is required in a DNS. Overall, however, these effects 
are relatively small causes for the discrepancy compared to factors such as particle polydispersity 
and the use of different definitions of the deposition rate, as discussed in Chen and McLaughlin 
(1995). Chen and McLaughlin (1995) showed that deposition rates depend strongly on particle 
polydispersity with monodisperse particles always having the lowest deposition rates compared to 
polydisperse particles. In the present work only monodisperse particles were considered and this 
is one cause of the under-prediction of deposition rates compared to measurements, Chen and 
McLaughlin (1995) also showed that the deposition rate can be increased if it is determined by 
weighing the deposited particle mass, rather than counting the number of deposited particles. 

Finally, while the optimum lift force is considerably more appropriate for simulations of 
wall-bounded turbulent shear flows than the Saffman formula, the force is formally valid for 
spherical particles in which the Reynolds numbers are small. For depositing particles, especially 
those with large relaxation times, particle Reynolds numbers are often not small. Dandy and Dwyer 
(1990) and Mei (1992) have examined particle motion in shear flows for finite particle Reynolds 
numbers, although not for near-wall flows. Future efforts into generalizing the expressions for the 
lift to account for larger Reynolds numbers in the vicinity of a solid boundary should in turn 
improve the accuracy of predictions of particle deposition in turbulent boundary layers. 
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